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This paper presents a mathematical model of a potentiometric biosensor based
on a potentiometric electrode covered with an enzyme membrane. The model is
based on the reaction–diffusion equations containing a non-linear term related to the
Michaelis–Menten kinetics of the enzymatic reaction. Using computer simulation the
influence of the thickness of the enzyme membrane on the biosensor response was
investigated. The digital simulation was performed using the finite difference technique.
Results of the numerical simulation were compared with known analytical solutions.
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1. Introduction

Biosensors are analytical devices that transform a biological recognition
into an electrical signal. The reaction occurs in the membrane where the sub-
strate of interest is converted to a product that causes an electrical response. This
response is measured by the transducer and then amplified, processed and dis-
played [1–4].
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In potentiometric biosensors, the analytical information is obtained by con-
verting the recognition process into a potential, which is proportional (in a loga-
rithmic fashion) to the concentration of the reaction product. These devices have
been widely used in environmental, medical and industrial applications because
of their high selectivity, simplicity and low cost [5–7].

Since it is not generally possible to measure the concentration of substrate
inside enzyme domain with analytical devices, starting from 1970s various math-
ematical models of biosensors have been developed and used as an important
tool to study and optimise analytical characteristics of actual biosensors [8–11].
The goal of this investigation is to make a model allowing an effective computer
simulation of potentiometric membrane biosensors acting at wide range of cata-
lytic parameters.

The developed model is based on reaction–diffusion equations [12,13], con-
taining a non-linear term related to the Michaelis–Menten kinetics of the enzy-
matic reaction. Using computer simulation the influence of the thickness of the
enzyme membrane on the biosensor response was investigated. The computer
simulation was carried out using the finite difference technique [14].

2. Mathematical model

We consider a scheme of catalysed with enzyme (E) substrate (S) conver-
sion to a product (P) [1]

S
E−→ P. (1)

A biosensor may be considered as an electrode, having a layer of enzyme
applied onto the surface of the probe. Let us assume the symmetrical geome-
try of the electrode and homogeneous distribution of the immobilised enzyme in
the enzyme membrane. Coupling the enzyme–catalysed reaction in enzyme layer
with the one-dimensional-in-space diffusion, described by Fick’s law, leads to the
following equations of the reaction–diffusion type (t > 0):

∂S

∂t
= D

∂2S

∂x2
− VmaxS

KM + S
,

∂ P

∂t
= D

∂2 P

∂x2
+ VmaxS

KM + S
, 0 < x < d,

(2)

where x stands for space, t stands for time, S(x, t) is the concentration of the
substrate, P(x, t) is the concentration of the reaction product, d is the thick-
ness of the enzyme membrane, D is the diffusion coefficient, Vmax is the maximal
enzymatic rate and KM is the Michaelis constant.

Let x = 0 represents the electrode surface, while x = d represents the bulk
solution/membrane interface. The biosensor operation starts when the substrate
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appears over the surface of the enzyme region. This is used in the initial condi-
tions (t = 0)

S(x, 0) = 0, 0 � x < d, (3)

S(d, 0) = S0, (4)

P(x, 0) = 0, 0 � x � d, (5)

where S0 is the concentration of the substrate to be analysed.
If bulk solution is well-stirred and in powerful motion, then the diffusion

layer (0 < x < d) remains at a constant thickness [9,15,16]. Consequently, the
concentration of substrate as well as product over the enzyme surface (bulk solu-
tion/membrane interface) remains constant during the biosensor operation. At
the electrode surface, we define non-leakage boundary conditions (t > 0) [17,18]

∂S

∂x

∣
∣
∣
∣
x=0

= ∂ P

∂x

∣
∣
∣
∣
x=0

= 0, (6)

S(d, t) = S0, (7)

P(d, t) = 0. (8)

Typically, the change of potential caused by the reaction product concen-
tration change is measured. The potential is given by

E(t) = E0 + RcTK

zF
ln P(0, t), (9)

where E is the measured potential (in volts), E0 is a characteristic constant for
the ion-selective electrode. Rc is the universal gas constant, Rc = 8.314 J/mol/K,
TK is the absolute temperature (K ), z is the signed ionic charge, F is the Faraday
constant, F = 9648 C/mol [17,18]. Typically, the change of E caused by the P
concentration change is measuring.

We assume, that the system (2)–(8) approaches a steady-state as t → ∞
E∞ = lim

t→∞E(t). (10)

E∞ is assumed as the steady-state biosensor potential.

3. Solution of the problem

Closed mathematical solutions are not usually possible when analytically
solving non-linear partial differential equations with complex boundary con-
ditions. Therefore, the problem (2)–(8) was solved numerically using the finite
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difference technique [14]. To find a numerical solution of the problem in the
domain [0, d] × [0, T ] we introduced an uniform discrete grid ωh × ωτ , where

ωh = {xi : xi = ih, i = 0, 1, . . . , N , hN = d},
ωτ = {t j : t j = jτ, j = 0, 1, . . . , M; τ M = T }. (11)

We assume the following:

S j
i = S(xi , t j ), P j

i = P(xi , t j ), E j = E(t j ),

i = 0, . . . , N , j = 0, . . . , M. (12)

An implicit linear finite difference scheme has been built as a result of the differ-
ence approximation. The initial conditions (5) we approximated as follows:

S0
i = 0, i = 0, . . . , N − 1, (13)

S0
N = S0, (14)

P0
i = 0, i = 0, . . . , N . (15)

Differential equations (2) were approximated by the scheme

S j+1
i − S j

i

τ
= D

S j+1
i+1 − 2S j+1

i + S j+1
i−1

h2
− VmaxS j+1

i

KM + S j
i

,

i = 1, . . . , N − 1, j = 0, . . . , M − 1, (16)

P j+1
i − P j

i

τ
= D

P j+1
i+1 − 2P j+1

i + P j+1
i−1

h2
+ VmaxS j+1

i

KM + S j+1
i

,

i = 1, . . . , N − 1, j = 0, . . . , M − 1. (17)

The boundary conditions (6)–(8) were approximated as follows:

S j
0 = S j

1 , S j
N = S0, j = 1, . . . , M, (18)

P j
0 = P j

1 , P j
N = 0, j = 1, . . . , M. (19)

Equations (13)–(15) allow to calculate a solution of the problem on the
layer t = t0 = 0. When a solution on a layer t j ( j = 0, 1, . . . , M−1) has been cal-
culated, a solution on the next layer t = t j+1 can be calculated in two steps [19]:

(1) calculate values of S j+1
i , i = 0, . . . , N , solving the system of linear finite

difference equations (16) and (18);
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(2) calculate values of P j+1
i , i = 0, . . . , N , solving the system of linear finite

difference equations (17) and (19) using values of S j+1
i calculated in

step 1.

The systems of linear algebraic equations were solved efficiently in both
steps because of the tridiagonality of the matrices of the systems. Having the
numerical solution of the problem, the biosensor potential at time t = t j is cal-
culated by

E j = E0 + RcTK

zF
ln

(

P j
0

)

, j = 1, . . . , M. (20)

4. Computer simulation

The mathematical model as well as the numerical solution of the model
were evaluated for different values of the maximal enzymatic rate Vmax, substrate
concentration S0 and the thickness d of the enzyme layer. The following values
of the parameters were constant in the numerical simulation of all the experi-
ments:

D = 3.0 × 10−10 m2/s,

KM = 0.1 mol/m3 = 100 µM,

E0 = 0 V, z = 1, TK = 298 K.

(21)

The steady-state biosensor potential E∞ (the biosensor response) as well as
the time moment of occurrence of the steady-state potential (response time) were
assumed and analysed as ones of the most important characteristics of the bio-
sensors.

In digital simulation, the biosensor response time was assumed as the time
when the absolute potential slope value falls below a given small value norma-
lised with the potential value. In other words, the time

TR = min
P(0,t)>0

{

t :
∣
∣
∣
∣

1
E(t)

dE(t)

dt

∣
∣
∣
∣
< ε

}

(22)

needed to achieve a given dimensionless decay rate ε was used.
Consequently, the potential ER = E(TR) at the biosensor response time TR

was assumed as the steady-state biosensor potential E∞, ER ≈ E∞. In calcula-
tions, we used ε = 10−5.

The adequacy of the mathematical and numerical models was evaluated
using known analytical solutions for potentiometric biosensors. At relatively low
concentrations of the substrate, S0 � KM, the steady-state potential can be cal-
culated as follows [8]:

E∞ = E0 + RcTK

zF
ln

(

S0

(

1 − 1
cosh(σ )

))

, (23)
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σ 2 = Vmaxd2

KM D
. (24)

The dimensionless factor σ 2 is known as the diffusion modulus (Damköhler
number) [8,13]. The diffusion modulus σ 2 essentially compares the rate of
enzyme reaction (Vmax/KM) with the diffusion through the enzyme layer (D/d2).
The biosensor response is controlled by the diffusion when σ 2 � 1. If σ 2 � 1,
then the enzyme kinetics determines the response.

In the case of very high-substrate concentration, S0 � KM, the stationary
potential is expressed as follows [8]:

E∞ = E0 + RcTK

zF
ln

(

Vmaxd2

2D

)

= E0 + RcTK

zF
ln

(

σ 2KM

2

)

. (25)

The numerical solution of the model (2)–(8) was compared with the ana-
lytical ones (23) and (25) at five values of the maximal enzymatic rate Vmax: 0.1,
1, 10, 100, 1000 µM/s and two values of S0: 10−7 and 10−1 M. In all the cases,
the relative difference between the numerical and analytical solutions was less
than 1%.

Figure 1 shows both: the substrate and the product concentrations at
steady-state conditions (TR = 116 s) and at the following intermediate time val-
ues: 1, 5, 10, and 20 s, accepting d = 100 µm, Vmax = 100 µM/s, S0 = 100 µM.
Since the profiles of the substrate concentration S at t � 5 s are practically iden-
tical to the profile S116, they are not marked individually in figure 1.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

S0/2

S0

S116
S1

P5

P10

P20

P116

P1

S,
 P

, µ
M

x, µm

Figure 1. The profile of the substrate (S) and product (P) concentrations at t = 1, 5, 10, 20, and
116 s (inside the plot, the subscripts to S and P refer to the time values), TR = 116 s, d = 100 µm,

Vmax = 100 µM/s, S0 = 100 µM.
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At the steady-state conditions (∂S/∂t = ∂ P/∂t = 0), the governing equation
(2) and the boundary conditions (6)–(8) lead to

P(x, t) + S(x, t) = S0, t → ∞, x ∈ [0, d]. (26)

Because of this, the symmetry with respect to the axis S = P = 0.5S0 can
be noticed at t = TR in figure 1.

The response time TR as an approximate steady-state time is very sensitive
to the decay rate ε, i.e. TR → ∞, when ε → 0. To investigate the behaviour of
the response time we employed the time T0.001 of the potential differing from the
steady-state potential by 0.001 V,

T0.001 = min {t : E(t) > ER − 0.001} , ER = E(TR), E∞ ≈ ER. (27)

The approximate steady-state time T0.001 equals approximately 78 s at the
conditions defined in (21) and in the caption of figure 1.

5. Results and discussion

Using computer simulation we have investigated the dependence of the
steady-state biosensor potential on the thickness of the enzyme membrane. These
calculations were performed at the following five values of Vmax: 0.1, 1, 10, 100
and 1000 µM/s to get results for a wide range of values of the maximal enzy-
matic rate. Figure 2 shows the steady-state (maximal) potentials ER while fig-
ure 3 presents the approximate steady-state time T0.001 versus the thickness d of
the enzyme layer.
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Figure 2. The dependence of the steady-state potential ER on the thickness d of the enzyme layer
at five maximal enzymatic rates Vmax: 0.1 (1), 1 (2), 10 (3), 100 (4), and 1000 (5) µM/s, S0 = KM =

100 µM.
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One can see in figure 2 that the steady-state biosensor potential ER is a
monotonous increasing function of d at all values of the maximal enzymatic rate
Vmax. However, ER is practically constant function of d at high values of Vmax
as wells as of d. At a concrete not great thickness d, the higher maximal enzy-
matic rate Vmax corresponds to the greater value of ER.

The stability of the response is one of the most critical characteristics of
biosensors [20]. In practice, it is very important to have biosensors keeping
their analytical capability for a long period. Usually the maximal enzymatic rate
Vmax decreases permanently due to enzyme inactivation. In general, the biosen-
sor response is sensitive to changes of Vmax. Figure 2 shows, that the biosen-
sor steady-state potential can differ 100-fold, when changing Vmax. The variation
is especially notable in cases of relatively thin enzyme membrane. In the cases
of relatively thick enzyme membrane, ER practically does not vary by changing
Vmax. Consequently, a biosensor containing a thicker enzyme layer gives more
stable response than a biosensor with thinner layer. However, the thick mem-
brane-based biosensors have very durable response time (figure 3). For example,
the response time T0.001 is about 48 s when the membrane thickness d equals to
100 µm. The time T0.001 is even more durable at thicker enzyme membrane. The
time T0.001 is approximately an exponentially increasing function of the thickness
d. The influence of the maximal enzymatic rate Vmax on the response time T0.001
is slight only. So, the biosensors of relatively thick enzyme membrane are of lim-
ited applicability in flow injection systems [21], which are widely used for deter-
mination of various compounds.

Thus, a problem of the membrane thickness optimisation arises. The task
is to find the thickness of the membrane so small as possible, ensuring the
stability of the biosensor response at a range of Vmax as wide as possible. Let
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Figure 3. The dependence of the response time T0.001 on the thickness d of the enzyme layer. The
notation and values of the parameters are the same as in figure 2.
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V1 and V2 be two values of the maximal enzymatic rate Vmax (V1 < V2) such as
we need to have stable biosensor response to substrate of concentration of S0.
Then we describe the minimal membrane thickness dδ(V1, V2, S0), at which the
relative difference R(d, V1, V2, S0) between the biosensor response (the steady-
state biosensor potential ER) at d = dδ, Vmax = V1 and another one response
at d = dδ, Vmax = V2 is less than dimensionless decay rate δ

R(d, V1, V2, S0) =
∣
∣
∣
∣

ER(d, V1, S0) − ER(d, V2, S0)

ER(d, V1, S0)

∣
∣
∣
∣
, (28)

dδ(V1, V2, S0) = min
d>0

{d : R(d, V1, V2, S0) < δ} , (29)

where ER(d, Vmax, S0) is the biosensor potential calculated at the membrane
thickness d, maximal enzymatic rate Vmax and substrate concentration S0.

Let us accept S0 = 100 µM, V1 = 100 µM/s, V2 = 1000 µM/s and δ =
0.01. From the numerical results, presented in figure 2, we found dδ ≈ 80 µm. To
evaluate the biosensor stability, we have calculated the responses of a biosensor
based on the membrane of thickness d = dδ(V1, V2, S0) = 80 µm at wide ranges
of the substrate concentrations S0 and of maximal enzymatic rate Vmax.

Figure 4 shows the potential ER versus the substrate concentration S0 at
five values of Vmax: 0.1, 1, 10, 100 and 1000 µM/s. No notable difference (fig-
ure 4) is observed between values of ER, calculated at two largest values of
Vmax: 100 and 1000 µM/s, when the substrate concentration S0 is less than about
1 mM. Figure 4 expressively shows the stable response of the biosensor, based
on the enzyme membrane of thickness d = 80 µm, when the maximal enzymatic
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Figure 4. The dependence of the steady-state potential ER on the substrate concentration S0 at five
maximal enzymatic rates Vmax: 0.1 (1), 1 (2), 10 (3), 100 (4), and 1000 (5) µM/s, d = 80 µm.
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rate reduces ten times: from 1000 to 100 µM/s. Although the membrane thick-
ness dδ was calculated for the substrate concentration S0 = 100 µM, the biosen-
sor response is sufficiently stable also to the substrate of the concentration S0
being up to about 1 mM. Figure 4 also shows that the response of the biosen-
sor of thickness of 80 µm is approximately constant at the concentration higher
than about 10 mM changing Vmax from 0.1 to 1000 µM/s. Because of this, such
biosensor is practically unuseful to determinate larger substrate concentration.

Figure 5 shows the steady-state potential ER versus the maximal reaction
rate Vmax at five values of substrate concentration S0: 1, 10, 100, 1000, and
10,000 µM and at the same membrane thickness d as above, i.e. d = 80 µm.
One can see in figure 5, that the response of the biosensor is stable to changes in
maximal enzymatic rate Vmax from 100 to 1000 µM/s when the concentration S0
equals or is less than 100 µM. In the case, when Vmax < 100 µM/s the biosensor
response is very sensitive to changes in Vmax.

Figures 6 and 7 show the influence of the substrate concentration S0 and
of the maximal enzymatic rate Vmax on the response time T0.001 at the same
thickness d of the enzyme membrane, d = dδ = 80 µm.

Figure 6 presents the effect of substrate concentration S0 on the response
time T0.001. One can see in figure 6, that T0.001 is a monotonous decreasing func-
tion of S0 at Vmax = 0.1 and 1 µM/s, and T0.001 is a non-monotonic function
of S0 at higher values of Vmax. The effect of non-monotonous behaviour of the
response time versus the substrate concentration has been discussed recently for
the cases of amperometric biosensors when the biosensor response is under diffu-
sion control, i.e. σ 2 � 1 [22,23,24]. Let us notice, that in the case of d = 80 µm
the diffusion modulus σ 2 becomes equal to 1 at Vmax ≈ 4.7 µM/s. As one can
see in figure 7, the effect of the maximal enzymatic rate Vmax on the response
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Figure 5. The dependence of the steady-state potential ER on the maximal enzymatic rate Vmax at
five substrate concentrations S0: 1 (1), 10 (2), 100 (3), 1000 (4), and 10000 (5) µM, d = 80 µm.
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Figure 6. The dependence of the response time T0.001 on the substrate concentration S0. The
notation and values of the parameters are the same as in figure 4.
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Figure 7. The dependence of the response time T0.001 on the maximal enzymatic rate Vmax. The
notation and values of the parameters are the same as in figure 5.

time T0.001 is very similar to the effect of substrate concentration S0. The shape
of curves for both types of biosensors: amperometric and potentiometric is very
similar (see figures 6 and 7 as well as [23,24]).

The concept of the minimal membrane thickness dδ(V1, V2, S0), at which
the relative difference R(d, V1, V2, S0) of the biosensor response is less than the
decay rate δ, can be considered as a framework to be used for determination
of the membrane thickness in a design of biosensors producing highly stable
response to the substrate of concentration S0 when the enzymatic rate changes
from V1 to V2. In this case the minimal thickness dδ has to be calculated at
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Figure 8. The dependence of the steady-state potential ER on the substrate concentration S0,
d = 10 µm. The notation and values of all other parameters are the same as in figure 4.

the concrete characteristics of biosensor operation: the diffusion coefficient D,
ionic charge z, Michaelis constant KM, temperature TK and at the substrate
concentration S0 approximate to expected one. Rather often the concentration
of analyte to be analysed varies within a known interval. Since the biosensor
response is less sensitive to enzyme inactivation at lower concentrations of the
substrate (figure 4) than at higher concentrations, a larger value of the range of
expected concentrations should be employed in calculation of dδ to ensure the
stable response in the entire interval of the expected concentrations.

In the case when S0 � KM or S0 � KM, the biosensor potential may be
calculated analytically from (23) or (25), otherwise the numerical solution of the
models (2)–(8) is preferable for calculation of ER(d, Vmax, S0), used in the frame-
work, expressed by formulas (28) and (29).

To be sure, that the framework, based on definitions (28) and (29), really
makes sense to find the membrane thickness, at which the biosensor gives rela-
tively stable response, we calculate the biosensor response also in a case of sig-
nificantly thinner enzyme membrane. Figures 8 and 9 show the dependence of
the steady state potential ER on the substrate concentration S0 and on the enzy-
matic rate Vmax, respectively, where the enzyme membrane is eight times thinner,
d = 10 µm, than in the case presented in figures 4–7.

One can see in figures 8 and 9, the biosensor response is very sensitive to
changes of Vmax at all values of S0. For example, in a case of S0 = 0.1 µM, the
steady-state potential ER at Vmax = V2 = 1 mM/s is about 16% (39 mV) higher
than ER at Vmax = V1 = 0.1 mM/s (figure 8), while the corresponding values of
ER are approximately the same in the case when the membrane is of thickness
d = dδ(V1, V2, S0) = 80 µm at the same values of V1, V2, S0 (figure 4).

Figure 2 shows the significant influence of the membrane thickness on the
biosensor response. However, the significance of the influence is different at the
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Figure 9. The dependence of the steady-state potential ER on the maximal enzymatic rates Vmax at
d = 10 µm. The notation and values of other parameters are the same as in figure 5.

different membrane thickness. We introduced a resistance BR of the membrane-
based biosensors to changes of membrane thickness [24]. The resistance BR of a
biosensor was expressed as a gradient of the steady-state biosensor potential E∞
with respect to the membrane thickness d

BR = dE∞
dd

≈ dER

dd
. (30)

Figure 10 plots the biosensor resistance BR versus the membrane thickness
d. The substrate concentration S0 as well as other parameters are the same as in
figure 2. One can see in figure 10, that the effect of the maximal enzymatic rate
Vmax on BR is very slight only, while figure 2 shows the significant effect of Vmax
on the steady state potential ER.

When comparing the behaviour of potentiometric biosensors with the
behaviour of the amperometric ones [24], one can see the notable difference
in the influence of the enzymatic rate Vmax on the resistance BR. In the case
of amperometric biosensors having relatively thin enzyme membranes, the enzy-
matic reaction rate Vmax effects significantly the resistance BR.

We have discussed the influence of the membrane thickness d and maxi-
mal enzymatic rate Vmax on the biosensor response. The dimensionless diffusion
modulus σ 2 combines directly both these parameters of the mathematical mod-
els (2)–(8). The diffusion modules σ 2 increases with increase of both parameters:
Vmax and d.

The numerical experiments presented in figure 2 were repeated with two
additional substrate concentrations S0:10−7, 10−4, 10−1 M and plotted as a func-
tion ER of the diffusion modulus σ 2. Figure 11 presents the results of calcula-
tions. One can see in this figure, that all the values of ER calculated at concrete
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Figure 10. The biosensor resistance BR versus the thickness d of the enzyme layer. The notation
and values of the parameters are the same as in figure 2.
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Figure 11. The dependence of the steady-state potential ER on the dimensionless diffusion modulus
σ 2 at three substrate concentrations S0: 10−7 (1), 10−4 (2), 10−1 (3) M, and five maximal enzymatic
rates Vmax: 0.1, 1, 10, 100, and 1000 µM/s, changing the membrane thickness d.

enzymatic rate Vmax form one continuous curve. In both extreme cases of
S0: S0 � KM and S0 � KM steady state potential is expressed through σ with no
additional entries of Vmax and d (see formulas (23) and (25)). Figure 11 shows
that this property is valid also for intermediate values of S0: S0 ≈ KM. So, the
decrease in steady-state potential appeared due to the decrease of Vmax can really
be compensated by increase of the membrane thickness d. This is employed in
our framework (28) and (29).
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6. Conclusions

The mathematical model (2)–(8) can be successfully used to investigate reg-
ularities of the response of potentiometric membrane-based biosensors.

The steady-state biosensor potential ER is a monotonous increasing func-
tion of the enzyme layer thickness d, of the substrate concentration S0 as well as
of the maximal enzymatic rate Vmax (figures 2, 4, 5, 8, and 9). ER is a monoto-
nous increasing function also of the diffusion modulus σ 2 (figure 11).

In the cases, when the biosensor response is significantly under diffusion
control (σ 2 � 1), the steady-state time T0.001 is a non-monotonous function of
the substrate concentration S0 as well as of the maximal enzymatic rate Vmax
(figures 6 and 7). T0.001 is a monotonous decreasing function of S0 as well as of
Vmax when the enzyme kinetics predominates in the biosensor response (σ 2 � 1).

The mathematical models (2)–(8) together with the definitions (28) and (29)
describe a way for selection of the membrane thickness d, ensuring a stable bio-
sensor response. In cases when S0 � KM or S0 � KM, the steady-state potential
ER to be used in (28), may be calculated analytically from (23) and (25), respec-
tively, otherwise the computer simulation based on the models (2)–(8) is prefer-
able for the calculations.
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[20] J. Pickup and D.R. Thévenot, in: Advances in Biosensors, Supplement 1, ed. A.P.F. Turner

(JAI Press, London, 1993), pp. 201–225.
[21] J. Ruzicka and E.H. Hansen, Flow Injection Analysis, 2nd edn. (Wiley-Interscience, New York,

1988).
[22] P.N. Bartlett, P.R. Birkin and E.N.K. Wallace, J. Chem. Soc. Faraday Trans. 93 (1997) 1951.
[23] R. Baronas, F. Ivanauskas and J. Kulys, J. Math. Chem. 32 (2002) 225.
[24] R. Baronas, F. Ivanauskas and J. Kulys, Sensors 3 (2003) 248.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


